#-generation 0000	ZFC vs the V-logic Multiverse	

Comparing ZFC and the V-logic multiverse using MAXIMIZE

Matteo de Ceglie decegliematteo@gmail.com

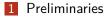
BLAST 2021 Contributed Session 1

9th June 2021

イロト イボト イヨト イヨト

de Ceglie, M.

#-generation 0000	<i>ZFC vs</i> the <i>V</i> -logic Multiverse	

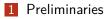


2 #-generation

- 3 ZFC vs the V-logic Multiverse
- 4 Concluding remarks

de Ceglie, M.

#-generation	<i>ZFC vs</i> the <i>V</i> -logic Multiverse	

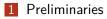


2 #-generation

- 3 ZFC vs the V-logic Multiverse
- 4 Concluding remarks

de Ceglie, M.

#-generation 0000	ZFC vs the V-logic Multiverse	



2 #-generation

3 ZFC vs the V-logic Multiverse

de Ceglie, M.

#-generation 0000	<i>ZFC vs</i> the <i>V</i> -logic Multiverse	

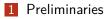


2 #-generation

- 3 ZFC vs the V-logic Multiverse
- 4 Concluding remarks

de Ceglie, M.

Preliminaries ●000	#-generation	<i>ZFC vs</i> the <i>V</i> -logic Multiverse	



2 #-generation

- 3 ZFC vs the V-logic Multiverse
- 4 Concluding remarks

de Ceglie, M.

The universism/multiversism debate

Universism

There exists only one set theoretic universe, V, that contains all the possible sets and thus cannot be expanded.

Multiversism

There are several set theoretic universes, each one instantiating a different axiomatization and concept of set, and they can all be further expanded.

de Ceglie, M.

The universism/multiversism debate

Universism

There exists only one set theoretic universe, V, that contains all the possible sets and thus cannot be expanded.

Multiversism

There are several set theoretic universes, each one instantiating a different axiomatization and concept of set, and they can all be further expanded.

de Ceglie, M.

The V-logic Multiverse

- The infinitary logic V-logic, based upon the language L_{κ⁺,ω}, is the background logic;
- The multiverse is the collection of all the possible outer extensions of the ground universe V generated through set-generic, class-generic, hyperclass forcing, etc.;
- MAS For any first-order φ with parameters from V, if the sentence of V-logic expressing " \overline{W} is an outer model of V satisfying φ " is consistent in V-logic, then there is a universe W that is an outer model of V and that satisfies φ .

The V-logic Multiverse

- The infinitary logic V-logic, based upon the language L_{κ⁺,ω}, is the background logic;
- The multiverse is the collection of all the possible outer extensions of the ground universe V generated through set-generic, class-generic, hyperclass forcing, etc.;
- MAS For any first-order φ with parameters from V, if the sentence of V-logic expressing " \overline{W} is an outer model of V satisfying φ " is consistent in V-logic, then there is a universe W that is an outer model of V and that satisfies φ .

э

The V-logic Multiverse

- The infinitary logic V-logic, based upon the language L_{κ⁺,ω}, is the background logic;
- The multiverse is the collection of all the possible outer extensions of the ground universe V generated through set-generic, class-generic, hyperclass forcing, etc.;
- MAS For any first-order φ with parameters from V, if the sentence of V-logic expressing " \overline{W} is an outer model of V satisfying φ " is consistent in V-logic, then there is a universe W that is an outer model of V and that satisfies φ .

イロト イヨト イヨト イヨト

3

Preliminaries 000●	#-generation 0000	ZFC vs the V-logic Multiverse	

Principle

When deciding which foundational framework to use, we should prefer the one that proves more isomorphism types.

- $\blacktriangleright ZFC + V = L vs ZFC + \exists 0^{\#};$
- ZFC + 30[#] proves the existence of a non-constructible set;
- In turn, this means that we can prove that ZPC + 30[#] proves an isomorphism type that cannot be realised by constructible set (i.e. in ZPC + V = 1);

イロン イヨン イヨン イヨン

▶ Hence, ZFC + ∃0[#] maximizes over ZFC + V = ↓

de Ceglie, M.

Preliminaries 000●	#-generation 0000	ZFC vs the V-logic Multiverse	

Principle

When deciding which foundational framework to use, we should prefer the one that proves more isomorphism types.

$$\blacktriangleright ZFC + V = L vs ZFC + \exists 0^{\#};$$

▶ $ZFC + \exists 0^{\#}$ proves the existence of a non-constructible set;

In turn, this means that we can prove that ZFC + ∃0[#] proves an isomorphism type that cannot be realised by constructible set (i.e. in ZFC + V = L);

イロト イヨト イヨト --

• Hence, $ZFC + \exists 0^{\#}$ maximizes over ZFC + V = L.

Preliminaries 000●	#-generation 0000	ZFC vs the V-logic Multiverse	

Principle

When deciding which foundational framework to use, we should prefer the one that proves more isomorphism types.

$$\blacktriangleright ZFC + V = L vs ZFC + \exists 0^{\#};$$

► $ZFC + \exists 0^{\#}$ proves the existence of a non-constructible set;

In turn, this means that we can prove that ZFC + ∃0[#] proves an isomorphism type that cannot be realised by constructible set (i.e. in ZFC + V = L);

イロト イポト イヨト イヨト

▶ Hence, $ZFC + \exists 0^{\#}$ maximizes over ZFC + V = L.

Preliminaries 000●	#-generation 0000	ZFC vs the V-logic Multiverse	

Principle

When deciding which foundational framework to use, we should prefer the one that proves more isomorphism types.

•
$$ZFC + V = L vs ZFC + \exists 0^{\#};$$

► $ZFC + \exists 0^{\#}$ proves the existence of a non-constructible set;

In turn, this means that we can prove that ZFC + ∃0[#] proves an isomorphism type that cannot be realised by constructible set (i.e. in ZFC + V = L);

イロト イポト イヨト イヨト

▶ Hence, $ZFC + \exists 0^{\#}$ maximizes over ZFC + V = L.

Preliminaries 000●	#-generation 0000	<i>ZFC vs</i> the <i>V</i> -logic Multiverse	

Principle

When deciding which foundational framework to use, we should prefer the one that proves more isomorphism types.

$$\blacktriangleright ZFC + V = L vs ZFC + \exists 0^{\#};$$

► $ZFC + \exists 0^{\#}$ proves the existence of a non-constructible set;

In turn, this means that we can prove that ZFC + ∃0[#] proves an isomorphism type that cannot be realised by constructible set (i.e. in ZFC + V = L);

• Hence, $ZFC + \exists 0^{\#}$ maximizes over ZFC + V = L.

#-generation ●000	ZFC vs the V-logic Multiverse	

2 #-generation

- 3 ZFC vs the V-logic Multiverse
- 4 Concluding remarks

de Ceglie, M.

#-generation ○●○○	<i>ZFC vs</i> the <i>V</i> -logic Multiverse	

Definition [Antos, Barton, Friedman, Honzik]

A class iterated sharp is a transitive structure $\mathfrak{N} = (N, U)$ such that:

- it is a model of ZFC⁻ (i.e. ZFC without the Power Set Axiom);
- It has critical point κ, where κ is the largest cardinal and it is strongly inaccessible;
- (N, U) is amenable (i.e. $x \cap U \in N$ for any $x \in N$);
- U is a normal measure on κ in (N,U);
 - it is iterable in the sense that all successive ultrapower iterations along class well-orders are well-founded.

/**ERSITÄT** Z B U R G

э

#-generation	ZFC vs the V-logic Multiverse	Concluding remarks
0000		

Definition [Antos, Barton, Friedman, Honzik]

A class iterated sharp is a transitive structure $\mathfrak{N} = (N, U)$ such that:

- it is a model of ZFC⁻ (i.e. ZFC without the Power Set Axiom);
- lt has critical point κ , where κ is the largest cardinal and it is strongly inaccessible;
- ▶ (N, U) is amenable (i.e. $x \cap U \in N$ for any $x \in N$);
- U is a normal measure on κ in (N,U);
 - it is iterable in the sense that all successive ultrapower iterations along class well-orders are well-founded.

/ERSITÄT Z B U R G

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

#-generation	ZFC vs the V-logic Multiverse	Concluding remarks
0000		

Definition [Antos, Barton, Friedman, Honzik]

A class iterated sharp is a transitive structure $\mathfrak{N} = (N, U)$ such that:

- it is a model of ZFC⁻ (i.e. ZFC without the Power Set Axiom);
- lt has critical point κ , where κ is the largest cardinal and it is strongly inaccessible;
- (N, U) is amenable (i.e. $x \cap U \in N$ for any $x \in N$);
 - U is a normal measure on κ in (N,U);
 - it is iterable in the sense that all successive ultrapower iterations along class well-orders are well-founded.

Z B U R G

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

#-generation	ZFC vs the V-logic Multiverse	Concluding remarks
0000		

Definition [Antos, Barton, Friedman, Honzik]

A class iterated sharp is a transitive structure $\mathfrak{N} = (N, U)$ such that:

- it is a model of ZFC⁻ (i.e. ZFC without the Power Set Axiom);
- lt has critical point κ , where κ is the largest cardinal and it is strongly inaccessible;

Z B II R G

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

- (N, U) is amenable (i.e. $x \cap U \in N$ for any $x \in N$);
- U is a normal measure on κ in (N,U);
 - it is iterable in the sense that all successive ultrapower iterations along class well-orders are well-founded.

Definition [Antos, Barton, Friedman, Honzik]

A class iterated sharp is a transitive structure $\mathfrak{N} = (N, U)$ such that:

- it is a model of ZFC⁻ (i.e. ZFC without the Power Set Axiom);
- lt has critical point κ , where κ is the largest cardinal and it is strongly inaccessible;

Z B U R G

э

イロト イボト イヨト イヨト

- (N, U) is amenable (i.e. $x \cap U \in N$ for any $x \in N$);
- U is a normal measure on κ in (N,U);
- it is iterable in the sense that all successive ultrapower iterations along class well-orders are well-founded.

	#-generation	ZFC vs the V-logic Multiverse	Concluding remarks
0000	0000	000	000

Definition [Antos, Barton, Friedman, Honzik]

A transitive model $\mathfrak{M} = (M, \in)$ is class iterably sharp generated iff there is a class-iterable sharp (N, U) and an iteration $N_0 \to N_1 \to N_2 \to \ldots$ such that $M = \bigcup_{\beta \in On^{\mathfrak{M}}} V_{\kappa_\beta}^{N_\beta}$.

- Any satisfaction obtainable in height extensions of M adding ordinals is already reflected to an initial segment of M;
- We are able to coalesce many reflection principles into a single property of a model;

イロト イポト イヨト イヨト

Definition [Antos, Barton, Friedman, Honzik]

A transitive model $\mathfrak{M} = (M, \in)$ is class iterably sharp generated iff there is a class-iterable sharp (N, U) and an iteration $N_0 \to N_1 \to N_2 \to \ldots$ such that $M = \bigcup_{\beta \in On^{\mathfrak{M}}} V_{\kappa_\beta}^{N_\beta}$.

- Any satisfaction obtainable in height extensions of M adding ordinals is already reflected to an initial segment of M;
- We are able to coalesce many reflection principles into a single property of a model;
- E.g. A model M being class iterably sharp generated entails reflection from M to initial segments of nth-order logic for n.

Definition [Antos, Barton, Friedman, Honzik]

A transitive model $\mathfrak{M} = (M, \in)$ is class iterably sharp generated iff there is a class-iterable sharp (N, U) and an iteration $N_0 \to N_1 \to N_2 \to \ldots$ such that $M = \bigcup_{\beta \in On^{\mathfrak{M}}} V_{\kappa_\beta}^{N_\beta}$.

- Any satisfaction obtainable in height extensions of M adding ordinals is already reflected to an initial segment of M;
- We are able to coalesce many reflection principles into a single property of a model;

E.g. A model M being class iterably sharp generated entails reflection from M to initial segments of nth-order logic for an UNIVERSITÄT n.

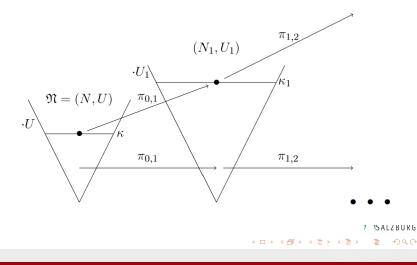
Definition [Antos, Barton, Friedman, Honzik]

A transitive model $\mathfrak{M} = (M, \in)$ is class iterably sharp generated iff there is a class-iterable sharp (N, U) and an iteration $N_0 \to N_1 \to N_2 \to \ldots$ such that $M = \bigcup_{\beta \in On^{\mathfrak{M}}} V_{\kappa_\beta}^{N_\beta}$.

- Any satisfaction obtainable in height extensions of M adding ordinals is already reflected to an initial segment of M;
- We are able to coalesce many reflection principles into a single property of a model;
- E.g. A model M being class iterably sharp generated entails reflection from M to initial segments of nth-order logic for any n.

#-generation 000●	<i>ZFC vs</i> the <i>V</i> -logic Multiverse	

A useful picture



The V-logic Multiverse, ZFC and MAXIMIZE

#-generation 0000	ZFC vs the V-logic Multiverse ●○○	

2 #-generation

3 ZFC vs the V-logic Multiverse

de Ceglie, M.

#-generation 0000	ZFC vs the V-logic Multiverse $\circ \bullet \circ$	

The main claim

Claim

The V-logic multiverse (intended as ZFC + LCs + MAS) maximizes over the single universe framework (intended as ZFC + LCs).

- In the V-logic Multiverse we can find an object that it is not present in ZFC + LCs;
- Moreover, this object realises a new isomorphism type, that it is not available in ZFC + LCs.

de Ceglie, M.

#-generation 0000	ZFC vs the V-logic Multiverse $\circ \bullet \circ$	

The main claim

Claim

The V-logic multiverse (intended as ZFC + LCs + MAS) maximizes over the single universe framework (intended as ZFC + LCs).

- In the V-logic Multiverse we can find an object that it is not present in ZFC + LCs;
- Moreover, this object realises a new isomorphism type, that it is not available in ZFC + LCs.

de Ceglie, M.

#-generation	ZFC vs the V-logic Multiverse	Concluding remarks
	000	

The main claim

Claim

The V-logic multiverse (intended as ZFC + LCs + MAS) maximizes over the single universe framework (intended as ZFC + LCs).

- In the V-logic Multiverse we can find an object that it is not present in ZFC + LCs;
- Moreover, this object realises a new isomorphism type, that it is not available in ZFC + LCs.

SO A

- In the V-logic Multiverse, there are proper, uncountable, generic extensions of V;
- If there are generic extensions of V, then there are iterable class sharps for V;
- Thus, V is class iterably sharp generated in the V-logic multiverse;
- In turn, this realises a new isomorphism type, between the models generated from class iterated sharps;
- We cannot have any of this in ZFC + LCs, since in that case we would be able to prove the existence of a cardinal that is both regular and singular.

イロト イヨト イヨト --

- In the V-logic Multiverse, there are proper, uncountable, generic extensions of V;
- If there are generic extensions of V, then there are iterable class sharps for V;
- Thus, V is class iterably sharp generated in the V-logic multiverse;
- In turn, this realises a new isomorphism type, between the models generated from class iterated sharps;
- We cannot have any of this in ZFC + LCs, since in that case we would be able to prove the existence of a cardinal that is both regular and singular.

- In the V-logic Multiverse, there are proper, uncountable, generic extensions of V;
- If there are generic extensions of V, then there are iterable class sharps for V;
- Thus, V is class iterably sharp generated in the V-logic multiverse;
- In turn, this realises a new isomorphism type, between the models generated from class iterated sharps;
- We cannot have any of this in ZFC + LCs, since in that case we would be able to prove the existence of a cardinal that is both regular and singular.

э

- In the V-logic Multiverse, there are proper, uncountable, generic extensions of V;
- If there are generic extensions of V, then there are iterable class sharps for V;
- Thus, V is class iterably sharp generated in the V-logic multiverse;
- In turn, this realises a new isomorphism type, between the models generated from class iterated sharps;

We cannot have any of this in ZFC + LCs, since in that case we would be able to prove the existence of a cardinal that is both regular and singular.

イロト イポト イヨト イヨト

3

- In the V-logic Multiverse, there are proper, uncountable, generic extensions of V;
- If there are generic extensions of V, then there are iterable class sharps for V;
- Thus, V is class iterably sharp generated in the V-logic multiverse;
- In turn, this realises a new isomorphism type, between the models generated from class iterated sharps;
- We cannot have any of this in ZFC + LCs, since in that case we would be able to prove the existence of a cardinal that is both regular and singular.

1

#-generation 0000	ZFC vs the V-logic Multiverse	Concluding remarks ●00

2 #-generation

3 ZFC vs the V-logic Multiverse

4 Concluding remarks

de Ceglie, M.

Is this argument safe from a devil's advocate?

- ► ZFC + V = L implies that no transitive model of ZFC + ∃0[#] can contain any uncountable ordinal;
- No countable ordinal can be isomorphic to an uncountable ordinal;
- ► Hence, ZFC + V = L realises an isomorphism type that cannot be found in ZFC + ∃0[#], thus it maximizes over it.

Making this argument more formal:

- Moving from isomorphism types to the notion of interpretation
- Proving that ZFC + LCs is restrictive compared to ZFC + LCs + MAS;

de Ceglie, M.

Is this argument safe from a devil's advocate?

- ZFC + V = L implies that no transitive model of ZFC + ∃0[#] can contain any uncountable ordinal;
- No countable ordinal can be isomorphic to an uncountable ordinal;
- ▶ Hence, ZFC + V = L realises an isomorphism type that cannot be found in $ZFC + \exists 0^{\#}$, thus it maximizes over it.

Making this argument more formal:

- Moving from isomorphism types to the notion of interpretation
- Proving that ZFC + LCs is restrictive compared to ZFC + LCs + MAS;

UNIVERSITÄT SALZBURG イロトイ団トイミトイミト ミークへで

de Ceglie, M.

- Is this argument safe from a devil's advocate?
 - ZFC + V = L implies that no transitive model of ZFC + ∃0[#] can contain any uncountable ordinal;
 - No countable ordinal can be isomorphic to an uncountable ordinal;
 - Hence, ZFC + V = L realises an isomorphism type that cannot be found in $ZFC + \exists 0^{\#}$, thus it maximizes over it.
- Making this argument more formal:
 - Moving from isomorphism types to the notion of interpretation
 - Proving that ZPC + LCs is restrictive compared to ZEC + LCs + MAS

- Is this argument safe from a devil's advocate?
 - ZFC + V = L implies that no transitive model of ZFC + ∃0[#] can contain any uncountable ordinal;
 - No countable ordinal can be isomorphic to an uncountable ordinal;
 - Hence, ZFC + V = L realises an isomorphism type that cannot be found in ZFC + ∃0[#], thus it maximizes over it.

Making this argument more formal:

 Moving from isomorphism types to the notion of interpretation
 Proving that ZFC+LCs is restrictive compared to ZFC+LCs+MAS;

イロト イポト イヨト イヨト

- Is this argument safe from a devil's advocate?
 - ZFC + V = L implies that no transitive model of ZFC + ∃0[#] can contain any uncountable ordinal;
 - No countable ordinal can be isomorphic to an uncountable ordinal;
 - Hence, ZFC + V = L realises an isomorphism type that cannot be found in ZFC + ∃0[#], thus it maximizes over it.
- Making this argument more formal:
 - Moving from isomorphism types to the notion of interpretation;
 Proving that ZFC + LCs is restrictive compared to ZFC + LCs + MAS;

イロト イポト イヨト イヨト

= nar

de Ceglie, M.

- Is this argument safe from a devil's advocate?
 - ZFC + V = L implies that no transitive model of ZFC + ∃0[#] can contain any uncountable ordinal;
 - No countable ordinal can be isomorphic to an uncountable ordinal;
 - Hence, ZFC + V = L realises an isomorphism type that cannot be found in ZFC + ∃0[#], thus it maximizes over it.
- Making this argument more formal:
 - Moving from isomorphism types to the notion of interpretation;
 Proving that ZFC + LCs is restrictive compared to ZFC + LCs + MAS;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つのべ

- Is this argument safe from a devil's advocate?
 - ZFC + V = L implies that no transitive model of ZFC + ∃0[#] can contain any uncountable ordinal;
 - No countable ordinal can be isomorphic to an uncountable ordinal;
 - Hence, ZFC + V = L realises an isomorphism type that cannot be found in ZFC + ∃0[#], thus it maximizes over it.
- Making this argument more formal:
 - Moving from isomorphism types to the notion of interpretation;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つのべ

Proving that ZFC + LCs is restrictive compared to ZFC + LCs + MAS;

de Ceglie, M.

#-generation 0000	ZFC vs the V-logic Multiverse	Concluding remarks ○○●

Thank you very much for your attention!

de Ceglie, M.